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Abstract
We introduce the Kepler E-Banhatti index, the modified Kepler E-Banhatti index and their corresponding exponentials

of a graph. Furthermore, we compute these newly defined Kepler E-Banhatti indices for friendship graphs, wheel graphs and
certain networks like chain silicate networks. Also we establish some properties of the Kepler E-Banhatti index.
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1. Introduction

Let G be a finite, simple, connected graph. Let V(G) be the vertex set and E(G) be the edge set of G.
The degree d(u) of a vertex u is the number of vertices adjacent to u. The edge e connecting the vertices
u and v is denoted by uv. If e=uv is an edge of G, then the vertex u and edge e are incident as are v
and e. Let d(e) denote the degree of an edge e=uv and defined as d(e)=d(u)+d(v)-2. For undefined terms
and notations, we refer [16, 18]. A graph index is a numerical parameter mathematically derived from the
graph structure. The graph indices have their applications in various disciplines of Science and Technol-
ogy [1, 2, 3, 4, 5] .

The Banhatti degree of a vertex u in a graph G defined as [20],

B(u) =
d(e)

n− d(u)
,
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where |V(G)| = n and the vertex u and edge e are incident in G. The first and second E-Banhatti indices
and their polynomials were defined by Kulli in [20] as,

EB1(G) =
∑

uv∈E(G)

[B(u) +B(v)] ,

EB2(G) =
∑

uv∈E(G)

B(u)×B(v).

Kulli introduced the product connectivity E-Banhatti index and the reciprocal product connectivity E-
Banhatti index of a graph G and they are defined as [21] as, The product connectivity E-Banhatti in-
dex,reciprocal product connectivity E-Banhatti index of a graph G and their polynomials defined by kulli
in [21] as,

PEB(G) =
∑

uv∈E(G)

1√
B(u)×B(v)

,

RPEB(G) =
∑

uv∈E(G)

√
B(u)×B(v).

The E-Banhatti Sombor index of a graph G defined in [17] as,

EBS(G) =
∑

uv∈E(G)

√
B(u)2 +B(v)2.

The Kepler Banhatti index was introduced by Kulli in [19] and it is defined as,

KB(G) =
∑

uv∈E(G)

[d(u) + d(v) +
√

d(u)2 + d(v)2].

Motivated by the definition of Kepler Banhatti index [11, 12, 13, 14, 15], we introduce the Kepler
E-Banhatti index of a graph and it is defined as

KEB(G) =
∑

uv∈E(G)

[B(u) +B(v) +
√
B(u)2 +B(v)2].

Considering the Kepler E-Banhatti index, we introduce the Kepler E-Banhatti exponential of a graph
G and defined it as

KEB(G, x) =
∑

uv∈E(G)

x

[
B(u)+B(v)+

√
B(u)2+B(v)2

]
.

We define the modified Kepler E-Banhatti index of a graph G as

m KEB(G) =
∑

uv∈E(G)

[
1

B(u) +B(v) +
√
B(u)2 +B(v)2

]
.

Considering the modified Kepler E-Banhatti index, we introduce the modified Kepler E-Banhatti exponential
of a graph G and defined it as

m KEB(G,x) =
∑

uv∈E(G)

x

[
1

B(u)+B(v)+
√

B(u)2+B(v)2

]
.

Several graph indices have been defined so far and they have applications in many areas such as ,
pharmacology, toxicology,environmental chemistry and theoretical chemistry [6, 7, 8, 9, 10] .
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2. Mathematical Properties

Theorem 2.1. Let G be a graph. Then

KEB(G) ⩾ (1+ 1√
2
)EB1(G),

with equality if only if G is regular.

Proof. , By the Jensen inequality, for a concave function f(x),

f

(
1
n

∑
xi

)
⩾ 1

n

∑
f (xi) ,

with equality for a strict concave function if and only if x1 = x2 = … = xn.Choosing f(x) =
√
x, We obtain

√
B(u)2 +B(v)2

2 ⩾ B(u) +B(v)

2 .

Thus

(B(u) +B(v)) +
√

B(u)2 +B(v)2 ⩾ (B(u) +B(v)) +
1√
2
(B(u) +B(v)).

Hence ∑
uv∈E(G)

[(B(u) +B(v)) +
√

B(u)2 +B(v)2] ⩾ (1+ 1√
2
)

∑
uv∈E(G)

(B(u) +B(v)).

Thus

KEB(G) ⩾ (1+ 1√
2
)EB1(G),

with equality if and only if G is regular.

Theorem 2.2. Let G be a graph. Then

KEB(G) ⩽ (1+ 1√
2
)EB1(G) −

√
2RPEB(G).

Proof. It is known that for 1 ⩽ x ⩽ y

f(x,y) = (x+ y−
√
xy) −

√
x2 + y2

2 .

is decreasing for each y.
Thus

f(x,y) ⩾ f(y,y) = 0.
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Hence

x+ y−
√
xy ⩾

√
x2 + y2

2

or √
x2 + y2

2 ⩽ x+ y−
√
xy

put x = B(u) and y = B(v), we get

√
B(u)2 +B(v)2

2 ⩽ (B(u) +B(v)) −
√
B(u)B(v)√

B(u)2 +B(v)2 ⩽
√

2[(B(u) +B(v)) −
√
B(u)B(v)]

which implies

(B(u) +B(v)) +
√
B(u)2 +B(v)2 ⩽ (B(u) +B(v)) +

√
2[(B(u) +B(v)) −

√
B(u)B(v)]∑

uv∈E(G)

[(B(u) +B(v)) +
√

B(u)2 +B(v)2] ⩽ (1+
√

2)
∑

uv∈E(G)

(B(u) +B(v)) −
√

2
∑

uv∈E(G)

√
B(u)B(v)]

Thus

KEB(G) ⩽ (1+
√

2)EB1(G) −
√

2RPEB(G)

Theorem 2.3. Let G be a graph. Then

KEB(G) < 2EB1(G)

Proof. It is known that for 1 ⩽ x ⩽ y

√
x2 + y2) < (x+ y)

(x+ y) +
√
x2 + y2) < 2(x+ y)

setting x = B(u) and y = B(v), we get,

B(u) +B(v)) +
√
B(u)2 +B(v)2 < 2(B(u) +B(v))

Thus ∑
uv∈E(G)

[(B(u) +B(v)) +
√
B(u)2 +B(v)2] ⩽ 2

∑
uv∈E(G)

(B(u) +B(v))
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Hence

KEB(G) < 2EB1(G)

Theorem 2.4. Let G be a graph. Then

KEB(G) = EB1(G) + EBS(G)

Proof. We have∑
uv∈E(G)

[(B(u) +B(v)) +
√
B(u)2 +B(v)2] =

∑
uv∈E(G)

(B(u) +B(v)) +
∑

uv∈E(G)

√
B(u)2 +B(v)2

Hence

KEB(G) = EB1(G) + EBS(G)

3. RESULTS FOR FRIENDSHIP GRAPHS

A friendship graph F4 is shown in Figure 1. A friendship graph Fn is a graph with 2n+1 vertices and
3n edges. In Fn, there are two types of edges as follows:

Figure 1: Friendship Graph F4

E1 = {uv ∈ E(Fn)|d(u) = d(v) = 2}, |E1| = n,
E2 = {uv ∈ E(Fn)|d(u) = 2,d(v) = 2n}, |E2| = 2n.

Therefore in Fn ,we obtain that {B(u),B(v) : uv ∈ E(Fn)} has two Banhatti edge set partitions.

BE1 = {uv ∈ E(Fn)|B(u) = B(v) =
2

2n− 1 }, |BE1| = n,

BE2 = {uv ∈ E(Fn)|B(u) =
2n

2n− 1,B(v) = 2n}, |BE2| = 2n.

Theorem 3.1. Let Fn be the friendship graph. Then

KEB(Fn) =
2n(2+

√
2) + 2n(4n2 + 2

√
2n

√
2n2 − 2n+ 1)

2n− 1
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Proof. We have,

KEB(Fn) =
∑

uv∈E(Fn)

[(B(u) +B(v)) +
√

B(u)2 +B(v)2]

= n

 2
2n− 1 +

2
2n− 1 +

√(
2

2n− 1

)2
+

(
2

2n− 1

)2
+ 2n

 2n
2n− 1 + 2n+

√(
2n

2n− 1

)2
+ (2n)2


After simplification we get ,

KEB(Fn) =
2n(2+

√
2) + 2n(4n2 + 2

√
2n

√
2n2 − 2n+ 1)

2n− 1

Theorem 3.2. Let Fn be the friendship graph. Then

KEB(Fn, x) = nx

[
2(2+

√
2

2n−1

]
+ 2nx

[
4n2+2

√
2n

√
2n2−2n+1

2n−1

]

Proof. We have,

KEB(Fn, x) =
∑

uv∈E(Fn)

x

[
(B(u)+B(v))+

√
B(u)2+B(v)2

]

= nx

 2
2n− 1+

2
2n− 1+

√√√√( 2
2n− 1

)2

+

( 2
2n− 1

)2


+ 2nx

 2n
2n− 1+2n+

√√√√( 2n
2n− 1

)2

+(2n)2


.

After simplification we get ,

KEB(Fn, x) = nx

[
2(2+

√
2

2n−1

]
+ 2nx

[
4n2+2

√
2n

√
2n2−2n+1

2n−1

]

Theorem 3.3. Let Fn be the friendship graph. Then

m KEB(Fn) = n

[
2n− 1

2(2+
√

2

]
+ 2n

[
2n− 1

4n2 + 2
√

2n
√

2n2 − 2n+ 1

]
Proof. We have,

m KEB(Fn) =
∑

uv∈E(Fn)

1[
(B(u) +B(v)) +

√
B(u)2 +B(v)2

]

= n
1 2

2n− 1 +
2

2n− 1 +

√(
2

2n− 1

)2
+

(
2

2n− 1

)2
 + 2n 1 2n

2n− 1 + 2n+

√(
2n

2n− 1

)2
+ (2n)2


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After simplification we get ,

m KEB(Fn) = n

[
2n− 1

2(2+
√

2

]
+ 2n

[
2n− 1

4n2 + 2
√

2n
√

2n2 − 2n+ 1

]

Theorem 3.4. Let Fn be the friendship graph. Then

m KEB(Fn,x) = nx

[
2n−1

2(2+
√

2

]
+ 2nx

[
2n−1

4n2+2
√

2n
√

2n2−2n+1

]

Proof. We have,

m KEB(Fn,x) =
∑

uv∈E(Fn)

x

1
[(B(u)+B(v))+

√
B(u)2+B(v)2]

= nx


1

2
2n− 1+

2
2n− 1+

√√√√√√
 2

2n− 1


2

+

 2
2n− 1


2


+ 2nx


1

2n
2n− 1+2n+

√√√√√√
 2n

2n− 1


2

+(2n)2



After simplification we get ,

m KEB(Fn,x) = nx

[
2n−1

2(2+
√

2

]
+ 2nx

[
2n−1

4n2+2
√

2n
√

2n2−2n+1

]

4. RESULTS FOR WHEEL GRAPHS

A wheel graph Wn is the join of Cn and K1. Then Wn has n+1 vertices and 2n edges. A graph Wn is
presented in Figure 2.

Figure 2: Wheel Graph Wn

In Wn, there are two types of edges as follows:

E1 = {uv ∈ E(Wn)|d(u) = d(v) = 3}, |E1| = n

E2 = {uv ∈ E(Wn)|d(u) = 3,d(v) = n}, |E2| = n
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Therefore in Wn ,there are two types of Banhatti edges based on Banhatti degrees of end vertices of
each edge follow:

BE1 = {uv ∈ E(Wn)|B(u) = B(v) =
4

n− 2 }, |BE1| = n.

BE2 = {uv ∈ E(Wn)|B(u) =
n+ 1
n− 2,B(v) = n+ 1}, |BE2| = n.

Theorem 4.1. Let Wn be the Wheel graph. Then

KEB(Wn) =
4n(2+

√
2) +n

[
(n2 − 1) + (n4 − 2n3 − 2n2 + 6n+ 5)

]
n− 2

Proof. We have,

KEB(Wn) =
∑

uv∈E(Wn)

[(B(u) +B(v)) +
√
B(u)2 +B(v)2]

= n

 4
n− 2 +

4
n− 2 +

√(
4

n− 2

)2
+

(
4

n− 2

)2
+n

n+ 1
n− 2 + (n+ 1) +

√(
n+ 1
n− 2

)2
+ (n+ 1)2



After simplification we get ,

KEB(Wn) =
4n(2+

√
2) +n

[
(n2 − 1) + (n4 − 2n3 − 2n2 + 6n+ 5)

]
n− 2

Theorem 4.2. Let Wn be the Wheel graph. Then

KEB(Wn, x) = nx

[
4(2+

√
2)

n−2

]
+nx

[
(n2−1))+

√
n4−2n3−2n2+6n+5
n−2

]

Proof. We have,

KEB(Wn, x) =
∑

uv∈E(Wn)

x

[
(B(u)+B(v))+

√
B(u)2+B(v)2

]

= nx

 4
n− 2+

4
n− 2+

√√√√( 4
n− 2

)2

+

( 4
n− 2

)2


+nx

n+ 1
n− 2+(n+1)+

√√√√(n+ 1
n− 2

)2

+(n+1)2


.

After simplification we get ,

KEB(Wn, x) = nx

[
4(2+

√
2)

n−2

]
+nx

[
(n2−1))+

√
n4−2n3−2n2+6n+5
n−2

]
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Theorem 4.3. Let Wn be the wheel graph. Then

m KEB(Wn) = n

[
n− 2

4(2+
√

2)

]
+n

[
n− 2

(n2 − 1) +
√
n4 − 2n3 − 2n2 + 6n+ 5

]
Proof. We have,

m KEB(Wn) =
∑

uv∈E(Wn)

1[
(B(u) +B(v)) +

√
B(u)2 +B(v)2

]

= n
1 4

n− 2 +
4

n− 2 +

√(
4

n− 2

)2
+

(
4

n− 2

)2
 +n

1n+ 1
n− 2 + (n+ 1) +

√(
n+ 1
n− 2

)2
+ (n+ 1)2



After simplification we get ,

m KEB(Wn) = n

[
n− 2

4(2+
√

2)

]
+n

[
n− 2

(n2 − 1) +
√
n4 − 2n3 − 2n2 + 6n+ 5

]

Theorem 4.4. Let Wn be the Wheel graph. Then

m KEB(Wn,x) = nx

[
n−2

4(2+
√

2)

]
+nx

[
n−2

(n2−1)+
√

n4−2n3−2n2+6n+5

]

Proof. We have,

m KEB(Wn,x) =
∑

uv∈E(Wn)

x

1
[(B(u)+B(v))+

√
B(u)2+B(v)2]

= nx


1

4
n− 2+

4
n− 2+

√√√√√√
 4
n− 2


2

+

 4
n− 2


2


+nx


1

n+ 1
n− 2+(n+1)+

√√√√√√
n+ 1
n− 2


2

+(n+1)2



After simplification we get ,

m KEB(Wn,x) = nx

[
n−2

4(2+
√

2)

]
+nx

[
n−2

(n2−1)+
√

n4−2n3−2n2+6n+5

]

5. RESULTS FOR CHAIN SILICATE NETWORKS

Silicates are very important elements of Earth’s crust. Sand and several minerals are constituted by
silicates. A family of chain silicate network is symbolized by CSn and is obtained by arranging n�2 tetrahedral
linearly, see Figure 3.
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Figure 3: Chain Silicate Network

Let G be the graph of a chain silicate network CSn with 3n+1 vertices and 6n edges. In G, by calcula-
tion, there are three types of edges based on the degree of end vertices of each edge as follows:

E1 = {uv ∈ E(CSn)|d(u) = d(v) = 3}, |E1| = n+ 4.
E2 = {uv ∈ E(CSn)|d(u) = 3,d(v) = 6}, |E2| = 4n− 2.
E3 = {uv ∈ E(CSn)|d(u) = d(v) = 6}, |E2| = n− 2.

Therefore in CSn ,there are three types of Banhatti edges based on Banhatti degrees of end vertices of
each edge follow:

BE1 = {uv ∈ E(Wn)|B(u) = B(v) =
4

3n− 2 }, |BE1| = n+ 4.

BE2 = {uv ∈ E(Wn)|B(u) =
7

3n− 2,B(v) = 7
3n− 5 }, |BE2| = 4n− 2.

BE3 = {uv ∈ E(Wn)|B(u) =
10

3n− 5,B(v) = 10
3n− 5 }, |BE2| = n− 2.

Theorem 5.1. Let CSn be the Chain Silicate Network . Then

KEB(CSn) =

(
n+ 4
3n− 2

)
4(2+

√
2) + (4n− 2)

[
42n− 49

(3n− 2)(3n− 5 +

√
882n2 − 2058n+ 1421

(9n2 − 12n+ 4)(9n2 − 30n+ 25)

]
+(

n− 2
3n− 5

)
10
(

2+
√

2
)

Proof. We have,

KEB(CSn) =
∑

uv∈E(CSn)

[(B(u) +B(v)) +
√
B(u)2 +B(v)2]

= (n+ 4)

 4
3n− 2 +

4
3n− 2 +

√(
4

3n− 2

)2
+

(
4

3n− 2

)2


+(4n− 2)

 7
3n− 2 +

7
3n− 5 +

√(
7

3n− 2

)2
+

(
7

3n− 5

)2


+(n− 2)

 10
3n− 5 +

10
3n− 5 +

√(
10

3n− 5

)2
+

(
10

3n− 5

)2

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After simplification we get ,

KEB(CSn) =

(
n+ 4
3n− 2

)
4(2+

√
2) + (4n− 2)

[
42n− 49

(3n− 2)(3n− 5 +

√
882n2 − 2058n+ 1421

(9n2 − 12n+ 4)(9n2 − 30n+ 25)

]
+(

n− 2
3n− 5

)
10
(

2+
√

2
)

Theorem 5.2. Let CSn be the Chain Silicate Network. Then

KEB(CSn, x) = (n+ 4)x
[

4(2+
√

2)
3n−2

]
+ (4n− 2)x

[
42n−49

(3n−2)(3n−5+

√
882n2−2058n+1421

(9n2−12n+4)(9n2−30n+25)

]
+ (n− 2)x

[
10(2+

√
2)

3n−5

]

Proof. We have,

KEB(Wn, x) =
∑

uv∈E(Wn)

x

[
(B(u)+B(v))+

√
B(u)2+B(v)2

]

= nx

 4
n− 2+

4
n− 2+

√√√√( 4
n− 2

)2

+

( 4
n− 2

)2


+nx

n+ 1
n− 2+(n+1)+

√√√√(n+ 1
n− 2

)2

+(n+1)2


.

After simplification we get ,

KEB(CSn, x) = (n+ 4)x
[

4(2+
√

2)
3n−2

]
+ (4n− 2)x

[
42n−49

(3n−2)(3n−5+

√
882n2−2058n+1421

(9n2−12n+4)(9n2−30n+25)

]
+ (n− 2)x

[
10(2+

√
2)

3n−5

]

Theorem 5.3. Let CSn be the Chain Silicate Network. Then

m KEB(CSn) = (n+ 4)
[

3n− 2
4(2+

√
2)

]
+ (4n− 2)

 1
42n− 49

(3n− 2)(3n− 5) +
√

882n2−2058n+1421
(9n2−12n+4)(9n2−30n+25)


+(n− 2)

[
(3n− 5)

10
(
2+

√
2
)]
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Proof. We have,

m KEB(CSn) =
∑

uv∈E(CSn)

1[
(B(u) +B(v)) +

√
B(u)2 +B(v)2

]

= (n+ 4) 1 4
3n− 2 +

4
3n− 2 +

√(
4

3n− 2

)2
+

(
4

3n− 2

)2


+(4n− 2) 1 7
3n− 2 +

7
3n− 5 +

√(
7

3n− 2

)2
+

(
7

3n− 5

)2


+(n− 2) 1 10
3n− 5 +

10
3n− 5 +

√(
10

3n− 5

)2
+

(
10

3n− 5

)2


After simplification we get ,

m KEB(CSn) = (n+ 4)
[

3n− 2
4(2+

√
2)

]
+ (4n− 2)

 1
42n− 49

(3n− 2)(3n− 5) +
√

882n2−2058n+1421
(9n2−12n+4)(9n2−30n+25)


+(n− 2)

[
(3n− 5)

10
(
2+

√
2
)]

Theorem 5.4. Let CSn be the Chain Silicate Network. Then

m KEB(CSn,x) = (n+ 4)x
[

3n−2
4(2+

√
2)

]
+ (4n− 2)x

 1
42n− 49

(3n− 2)(3n− 5)+

√
882n2−2058n+1421

(9n2−12n+4)(9n2−30n+25)



+(n− 2)x

[
(3n−5)

10(2+
√

2)

]
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Proof. We have,

m KEB(CSn,x) =
∑

uv∈E(CSn)

x

1
[(B(u)+B(v))+

√
B(u)2+B(v)2]

= (n+ 4)x

1
4

3n− 2+
4

3n− 2+

√√√√√√
 4

3n− 2


2

+

 4
3n− 2


2


+(4n− 2)x

1
7

3n− 2+
7

3n− 5+

√√√√√√
 7

3n− 2


2

+

 7
3n− 5


2


+(n− 2)x

1
10

3n− 5+
10

3n− 5+

√√√√√√
 10

3n− 5


2

+

 10
3n− 5


2


After simplification we get ,

m KEB(CSn,x) = (n+ 4)x
[

3n−2
4(2+

√
2)

]
+ (4n− 2)x

 1
42n− 49

(3n− 2)(3n− 5)+

√
882n2−2058n+1421

(9n2−12n+4)(9n2−30n+25)



+(n− 2)x

[
(3n−5)

10(2+
√

2)

]

CONCLUSIONS

We have introduced the Kepler E-Banhatti and modified Kepler E-Banhatti indices and their corre-
sponding exponentials of a graph. Furthermore the Kepler E-Banhatti and modified Kepler E-Banhatti
indices and their exponentials for friendship graph, wheel graph, chain silicate networks are determined.
Also some mathematical properties of Kepler E-Banhatti index are obtained.
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